

Regulation of tumour necrosis factor production by adrenal hormones *in vivo*: insights into the antiinflammatory activity of rolipram

¹E.R. Pettipher, J.M. Labasi, E.D. Salter, E.J. Stam, J.B. Cheng & R.J. Griffiths

Department of Cancer, Immunology and Infectious Diseases, Central Research Division, Pfizer Inc., Groton, CT 06340, U.S.A.

- 1 The role of adrenal hormones in the regulation of the systemic and local production of tumour necrosis factor $(TNF\alpha)$ was examined in male Balb/c mice.
- 2 Intraperitoneal injection of 0.3 mg E. coli lipopolysaccharide (LPS, 0111:B4) led to high levels of circulating TNF α without stimulating TNF α production in the peritoneal cavity. Systemic production of TNF α in response to LPS was increased in adrenalectomized animals and in normal animals treated with the β -adrenoceptor antagonist, propranolol. The glucocortoid antagonist, RU 486, did not modify systemic TNF α production. These results indicate that systemic TNF α production is regulated by adrenaline but not by corticosterone.
- 3 When mice were primed with thioglycollate, TNF α was produced in the peritoneal cavity in response to low dose LPS (1 μ g). The levels of TNF α in the peritoneal cavity were not enhanced by adrenalectomy or by treatment with either propranolol or RU 486, indicating local production of TNF α in the peritoneal cavity is not regulated by adrenaline or corticosterone.
- 4 The phosphodiesterase type IV (PDE-IV) inhibitor, rolipram, inhibited both the systemic production of TNF α in response to high dose endotoxin (ED $_{50}=1.3$ mg kg $^{-1}$) and the local production of TNF α in the peritoneal cavity in response to low dose endotoxin (ED $_{50}=9.1$ mg kg $^{-1}$). In adrenalectomized mice there was a slight reduction in the ability of rolipram to inhibit the systemic production of TNF α (ED $_{50}=3.3$ mg kg $^{-1}$) while the ability of rolipram to inhibit the local production of TNF α in the peritoneal cavity was virtually abolished (24% inhibition at 30 mg kg $^{-1}$). The glucocorticoid antagonist, RU 486, also reduced the ability of rolipram to inhibit local TNF α production while propranolol was without effect.
- 5 Systemic treatment with rolipram increased the plasma concentrations of corticosterone in normal mice but not in adrenalectomized mice indicating that rolipram can cause adrenal stimulation in vivo.
- 6 In summary, these data indicate that systemic production of $TNF\alpha$ in response to high dose endotoxin is controlled differently from the local production of $TNF\alpha$ in response to low dose endotoxin. The systemic production of $TNF\alpha$ is regulated by catecholamines, but not by corticosterone, while the local production of $TNF\alpha$ in the peritoneal cavity is not regulated by basal levels of either catecholamines or corticosterone.
- 7 These data also show that the ability of rolipram to inhibit the local production of $TNF\alpha$ is dependent on the release of corticosterone from the adrenal glands.

Keywords: Tumour necrosis factor; rolipram; inflammation; endotoxin

Introduction

Cytokines such as tumour necrosis factor (TNFa) are produced from host tissues in response to bacterial endotoxins during infection, and systemic overproduction of these molecules can precipitate shock. It has been appreciated for many years that removal of the adrenal glands can exacerbate many aspects of acute inflammation and increase susceptibility to endotoxic shock. It is now realized that adrenal hormones regulate the production of TNFα and interleukin-1 (Perretti et al., 1989; 1993; Butler et al., 1989; Parant et al., 1991) and can modulate the sensitivity of animals to the toxic action of these cytokines (Bertini et al., 1988). The effects of adrenalectomy have been largely attributed to a reduction in the levels of circulating corticosterone but since β -adrenoceptor agonists are also potent inhibitors of TNF α production (Severn et al., 1992), circulating catecholamines may also regulate cytokine production in response to endotoxin.

The inhibition of TNF α production by β -adrenoceptor agonists is a transcriptional effect mediated through elevation of the intracellular levels of adenosine 3':5'-cyclic monophosphate (cyclic AMP). Elevation of cyclic AMP leads to in-

hibition of a diverse range of leukocyte functions and the effect of β -adrenoceptor agonists can be mimicked and enhanced by phosphodiesterase inhibitors which inhibit the hydrolysis of cyclic AMP. Phosphodiesterase type-IV is the predominant phosphodiesterase isoenzyme present in inflammatory cells and is selectively inhibited by rolipram, a drug originally developed as an antidepressant (Beavo & Reifsnyder, 1990). There are ample reports that rolipram can inhibit leukocyte function. These effects include inhibition of superoxide production from neutrophils (Nielson et al., 1989; Simpson et al., 1992) and esoinophils (Dent et al., 1991), inhibition of histamine release and leukotriene production from basophils (Peachell et al., 1992) and mast cells (Griswold et al., 1993) and inhibition of TNF α production by macrophages (Semmler et al., 1993).

Rolipram has also been shown to inhibit TNF α production in vivo (Turner et al., 1993; Sekut et al., 1995) and since TNF α plays a central role in leukocyte recruitment and tissue injury in inflammatory diseases (Derkx et al., 1993; Elliott et al., 1994), reduction in the concentrations of this cytokine in inflamed tissues may represent an important therapeutic property of PDE-IV inhibitors. Consequently, in addition to evaluating the role of endogenous adrenal hormones in the regulation of TNF α production, we have examined the ability of rolipram to inhibit TNF α production in different tissues in

¹ Author for correspondence.

mice injected with bacterial endotoxin. Since it has been reported that the PDE-IV inhibitor, denbufylline, can cause release of corticosterone from rodent adrenal glands in vivo (Hadley et al., 1991), we have also examined the ability of rolipram to inhibit $TNF\alpha$ production in adrenalectomized mice.

Methods

Animals

Normal male Balb/c mice, adrenalectomized mice and their sham controls were purchased from Charles River Laboratories (Raleigh, NC, U.S.A.).

The drinking water of the adrenalectomized mice was supplemented with 0.9% sodium chloride.

Determination of the effect of rolipram on the production of $TNF\alpha$ in vivo

Male Balb/c mice (20-25 g) were dosed with vehicle or rolipram $(1-30 \text{ mg kg}^{-1})$ by oral gavage 0.5 h before injection of LPS (0.3 mg, i.p.). After 1 h, blood was collected in serum separator tubes and centrifuged at 10,000 g. The serum samples were stored at -20°C before assay. Adrenalectomized male Balb/c mice (20-25 g) and sham controls were treated in the same way. In some experiments control mice were pretreated with propranolol (5 mg kg⁻¹, i.p.) or RU 486 (25 mg kg⁻¹, i.p.) 15 min before injection of LPS.

To determine the effect of rolipram on the local production of TNF α , male Balb/c mice (20–25 g) were primed with an i.p. injection of Brewer thioglycollate (0.5 ml of a 10% solution) followed 4 days later by an i.p. injection of LPS (1 μ g). One hour later, the peritoneal cavities were lavaged with 3 ml heparinized saline containing the protease inhibitors, phenylmethylsulphonyl fluoride (0.25 mM), leupeptin (1 μ g ml⁻¹) and EDTA (1 mM) and the lavage fluids centrifuged at 10,000 g. The supernatants were stored at -20° C before assay. Control male Balb/c mice were pretreated with propranolol (5 mg kg⁻¹, i.p.) or RU 486 (25 mg kg⁻¹, p.o.) 15 min before dosing with rolipram.

TNFa assay

Samples were diluted 1 to 10 and assayed for TNF α in duplicate by ELISA (Genzyme, Boston, MA, U.S.A.). Standard curves were performed in the appropriate concentration of normal mouse serum or plasma. Under these conditions the level of detection was 0.1 ng per ml.

Corticosterone assay

In some experiments plasma levels of corticosterone were determined with a [³H]-corticosterone radioimmunoassay kit (ICN, Costa, Mesa, CA, U.S.A.). All samples were diluted 1 in 1000 prior to assay and under these conditions the lower limit of detection was 50 ng ml⁻¹.

Materials

Rolipram (4-[3-cyclopentyloxy-4-methoxyphenyl]-2-[1H]-pyrrolidone) and RU 486 (11β -(4-dimethyl aminophenyl) 17 β -hydroxy, 17 α (prop-1-ynyl) estra 4,9-dien-3-one) were synthesized in the department of Medicinal Chemistry, Pfizer Inc. Brewer thioglycollate medium was purchased from Difco (Detroit, MI, U.S.A.). All other reagents were purchased from the Sigma Chemical Company (St Louis, MO, U.S.A.).

Statistical analysis

The data were statistically analysed by use of the Student's unpaired t test and considered significant when P < 0.05.

Results

Systemic TNFa production in control and adrenalectomized mice in response to high dose endotoxin: effect of rolipram

High levels of TNF α were detected in the serum of control mice at 1 h after challenge with a lethal dose of LPS (0.3 mg, i.p.). The levels of TNF α were 3–4 fold higher in adrenalectomized animals in reponse to the same dose of LPS (Figure 1). Pretreatment with rolipram inhibited TNF α production in control mice (ED₅₀=1.3 mg kg⁻¹, p.o., n=3 independent experiments). Rolipram was also effective in inhibiting TNF α production in adrenalectomized mice (ED₅₀=3.3 mg kg⁻¹, p.o., n=3 independent experiments), albeit with a modest reduction in potency. It should be noted, however, that the levels of TNF α in adrenalectomized mice dosed with 10 mg kg⁻¹ rolipram were equivalent to those levels in vehicle-treated control mice and, even at 30 mg kg⁻¹, the inhibition of TNF α was not complete.

Systemic production of TNF α in response to high dose endotoxin in mice treated with propranolol or RU 486

Systemic production of TNF α in response to LPS was enhanced by treatment with propranolol but not RU 486 (Figures 2 and 3). The inhibitory activity of rolipram on the systemic production of TNF α was not significantly modified by either propranolol or RU 486 (Figures 2 and 3).

Local production of TNF α in peritoneal cavities of control and adrenalectomized mice in response to low dose endotoxin: effect of rolipram

Although TNF α could not be detected in peritoneal lavage fluids of normal mice injected with LPS (despite elevation of this cytokine in serum), high levels of TNF α were detected in peritoneal lavage fluids from thioglycollate - primed mice when challenged with an intraperitoneal injection of a low dose of LPS (1 μ g) (Figure 4). In contrast to the systemic production of TNF α , the local production of TNF α in response to LPS in primed mice was not elevated by removal of the adrenal glands (Figure 4), even though this dose of LPS did cause enhanced levels of circulating TNF α (data not shown) as described for the high dose of LPS in the previous section. In addition, rolipram inhibited TNF α production in the peritoneal cavities of normal mice (ED₅₀=9.1±1.2 mg kg⁻¹, p.o., n=4 in-

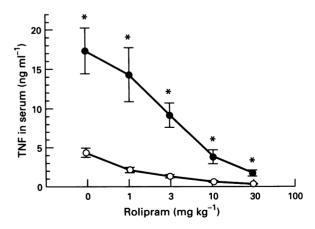


Figure 1 Effect of rolipram on the systemic production of $TNF\alpha$ in response to endotoxin in control male Balb/c mice (\bigcirc) or adrenalectomized mice (\blacksquare) . Rolipram was administered 30 min prior to challenge with endotoxin and serum samples were collected at 1 h after injection of endotoxin for measurement of $TNF\alpha$. Each point is the mean \pm s.e.mean of data from 3 independent experiments and each experiment was conducted with 5 mice per group.

dependent experiments) but was much less effective in inhibiting the production of TNF α at this site in adrenalectomized animals (24±10% inhibition at 30 mg kg⁻¹ p.o., n=4 independent experiments).

Local production of TNFa in response to low dose endotoxin in the peritoneal cavities of mice pretreated with RU 486 or propranolol: effects of dexamethasone and rolipram

Pretreatment with dexamethasone (0.1 mg kg⁻¹, p.o.) reduced TNF α production in the peritoneal cavity (1.8 \pm 0.2 ng ml⁻¹ in dexamethasone-treated animals versus 4.2 \pm 0.2 ng ml⁻¹ in controls, n=6 mice per group). This inhibition was reversed by coadministration of 25 mg kg⁻¹ RU 486 (4.2 \pm 0.4 ng ml⁻¹ in RU486/dexamethasone-treated animals, n=6 mice per group). However, this dose of RU 486 did not enhance local TNF α production but did diminish the inhibitory activity of rolipram (Figure 5). Propranolol at doses which elevated systemic TNF α

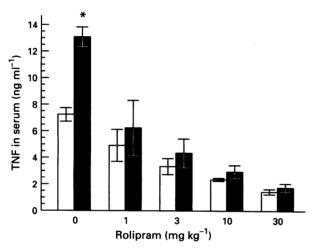


Figure 2 Effect of pretreatment with (\pm) -propranolol $(5 \text{ mg kg}^{-1}, \text{ i.p.})$ on the ability of rolipram to inhibit the systemic production of TNF α in response to LPS in male Balb/c mice. Mice pretreated with propranolol are depicted by solid columns and those pretreated with vehicle are shown by open columns. Each column is the mean \pm s.e.mean from 6 mice.

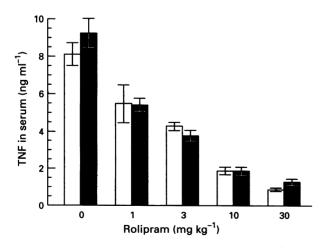


Figure 3 Effect of pretreatment with RU 486 ($25 \,\mathrm{mg\,kg}^{-1}$, i.p.) on the ability of rolipram to inhibit the systemic production of TNF α in response to LPS in male Balb/c mice. Mice pretreated with RU 486 are depicted by solid columns and those pretreated with vehicle are depicted by open columns. Each column is the mean \pm s.e.mean from 6 mice.

production did not modify the local production of TNF α in the peritoneal cavity nor did it affect the inhibitory activity of rolipram (Figure 5).

Effects of endotoxin and rolipram on the levels of corticosterone in the plasma of normal and adrenalectomized mice

The plasma of vehicle-treated Balb/c mice contained $253.7\pm37.8~\mathrm{ng~ml^{-1}}~(n=5)$ corticosterone. This was significantly increased to $398.2\pm24.9~\mathrm{ng~ml^{-1}}~(n=5)$ by treatment with rolipram (30 mg kg⁻¹, p.o.) and to $571.7\pm32.7~\mathrm{ng~ml^{-1}}~(n=5)$ by treatment with LPS (0.3 mg, i.p.). Combinations of rolipram and LPS were approximately additive (779.6 $\pm66.5~\mathrm{ng~ml^{-1}},~n=5$). The levels of corticosterone in the plasma from adrenalectomized mice were below the lower limit of detection (<50 ng ml⁻¹) under these assay conditions, providing confirmation that the mice had been effectively adrenalectomized.

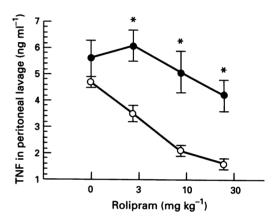


Figure 4 Effect of rolipram on the local production of $TNF\alpha$ in the peritoneal cavities of control thioglycollate - primed mice (\bigcirc) and in primed mice which had been adrenalectomized (\bigcirc) . Peritoneal lavage fluids were collected at 1 h after injection of endotoxin. Each point is the mean \pm s.e.mean of data from 4 independent experiments and each experiment was conducted with 5 mice per group.

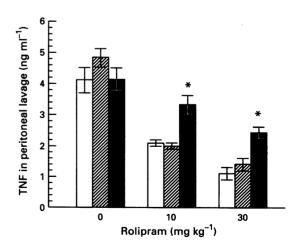


Figure 5 Comparison of the effect of propranolol or RU 486 pretreatment on the ability of rolipram to inhibit the local production of TNF α in the peritoneal cavities of thioglycollate-primed mice. Mice pretreated with vehicle are depicted by open columns, those pretreated with propranolol are depicted by hatched columns and those pretreated with RU 486 are depicted by solid columns. Each column is the mean \pm s.e.mean from 6 mice.

Discussion

We have confirmed previous observations that systemic $TNF\alpha$ production in endotoxic shock is enhanced by removal of the adrenal glands. This effect has been generally assumed to be due to a reduction in the levels of corticosterone but our data indicate that adrenaline plays a more important regulatory role than corticosterone since TNFa production was enhanced by the β -adrenoceptor antagonist, propranolol but not by the corticosterone antagonist, RU 486. This result is in agreement with previous studies which demonstrated that RU 486 does not enhance systemic TNFα production in response to LPS at doses which effectively block the action of glucocorticoids (Hawes et al., 1992; Perretti et al., 1993) but is surprising since it is well established that glucocorticoids can inhibit TNFa production in vitro and in vivo. The implication is that the tissues responsible for systemic production of TNFα are more sensitive to the inhibitory action of β -adrenoceptor agonists than to that of glucocorticoids. In this context, TNFa production by peripheral blood in vitro is exquisitively sensitive to inhibition by adrenaline but less sensitive to inhibition by dexamethasone (Pettipher, unpublished observations). Other tissues may be more sensitive to the inhibitory activity of glucocorticoids. However, these results do suggest that the contribution of catecholamines to the regulation of inflammatory responses may have been somewhat overlooked and, in some cases, the contribution of glucocorticoids overestimated. Indeed, in a model of carrageenin-induced pleurisy, adrenalectomy caused a two fold increase in oedema, leukocyte infiltration and lipid mediator production (Flower et al., 1986) while RU 486 caused only a modest (< 50%) increase in inflammatory responses (Peers et al., 1988). It would be of interest to determine the effect of propranolol in carrageenininduced pleurisy. It should be noted, however, that corticosteroids may be more important than adrenaline in the regulation of processes not controlled by the cellular levels of cyclic AMP, such as interleukin-1 production (Bailly et al., 1990; Molnar-Kimber et al., 1992) which is enhanced in adrenalectomized animals (Perretti et al., 1989). In addition to β -adrenoceptor agonists, systemic production of TNF α is also regulated by other agents which activate adenylyl cyclase since we have previously shown that inhibition of prostaglandin production by cyclo-oxygenase inhibitors enhances TNFα production in endotoxic shock (Pettipher & Wimberly, 1994).

In contrast to the systemic production of $TNF\alpha$, the local production of $TNF\alpha$ in primed mice was not affected by adrenalectomy or treatment with propranolol or RU 486. This may reflect a lack of sensitivity of the peritoneal cells to inhibition by adrenal hormones or suggest that the levels of adrenal hormones in the peritoneal cavity are too low to inhibit $TNF\alpha$ production. Since we know that $TNF\alpha$ production in the peritoneal cavity is sensitive to low doses of dexamethasone, the latter possibility is a more likely explanation, although the sensitivity to β -adrenoceptor agonists is unknown.

The PDE-IV inhibitor, rolipram, is able to inhibit TNFα production *in vivo* (Turner *et al.*, 1993; Sekut *et al.*, 1995), an

effect which has been presumed to be due to a direct effect on inflammatory cells. We found rolipram to be a potent inhibitor of systemic TNFa production in reponse to high dose endotoxin. Rolipram was also effective in reducing TNFa levels in the peritoneal cavities of primed mice but was less potent in this system. The reduced potency of rolipram in the peritoneal model compared to the sytemic model may reflect lower perinheral tissue concentrations of drug or a different pharmacological property of rolipram. Rolipram was also able to inhibit systemic TNFa in adrenalectomized mice but with a slight reduction in potency (2.5 fold). Although this reduction in potency is small it may be significant since rolipram, like all PDE-IV inhibitors, has a narrow therapeutic index. The inhibitory activity of rolipram was not modified by pretreatment with RU 486 or propranolol despite the ability of propranolol to enhance TNFα production. It is uncertain why propranolol did not reduce the potency of rolipram to the same extent as adrenalectomy but suggests that there may be additional factors derived from the adrenal glands which modulate the effects of rolipram on $TNF\alpha$ production. The effect of adrenalectomy on the ability of rolipram to inhibit TNFa production in the peritoneal cavity was much more marked. Only slight inhibition of TNFa was observed in adrenalectomized animals at the highest dose of rolipram and this effect did not reach statistical significance. The effect of adrenalectomy was mimicked by administration of the glucocorticoid antagonist, RU 486, which suggests that the inhibitory effect of rolipram on peritoneal TNFα is mediated through release of corticosterone from the adrenal glands. This is supported by our finding that rolipram increased the plasma concentrations of corticosterone which then presumably reached sufficient concentrations in the peritoneal cavity to inhibit TNFa production. We have also observed that the ability of rolipram to inhibit TNFα production in mouse blood ex vivo is largely due to the release of corticosterone (Pettipher, unpublished observations). It has been previously demonstrated that adrenalectomy can abrogate other anti-inflammatory activities of rolipram through removal of β -adrenergic tone (Underwood et al., 1992; Griswold et al., 1993). In these cases this may simply reflect synergy of the PDE-IV inhibitor with resting levels of catecholamines. Based on our present study, it appears that in addition to its direct effect on the PDE-IV enzymes present in inflammatory cells, rolipram has an anti-inflammatory property mediated by the release of corticosterone and that in some circumstances the latter property may predominate over its direct effects. The release of corticosterone is clearly an unacceptable mechanism of action for any anti-inflammatory agent but may only occur in rodents. If so, it suggests that experiments in rodents may overestimate the efficacy and potency of PDE-IV inhibitors.

In summary, we have shown that adrenalectomy can affect the ability of rolipram to inhibit TNF α production in some tissues in vivo and we suggest that recent reports (Sommer et al., 1995; Sekut et al., 1995) that rolipram and other PDE-IV inhibitors have dramatic anti-inflammatory efficacy in rodents should be re-evaluated in this light.

References

- BAILLY, S., FERRURA, B., FAY, M. & GOUGEROT-POCIDALO, M.A. (1990). Differential regulation of IL-6, IL-1α, IL-1β and TNFα production in LPS-stimulated human monocytes: role of cyclic AMP. Cytokine, 2, 205-210.
- BEAVO, J.A. & REIFSNYDER, D.H. (1990). Primary sequence of cyclic phosphodiesterase isoenzymes and the design of selective inhibitors. *Trends Pharmacol. Sci.*, 11, 150-155.
- BERTINI, R., BIANCHI, M. & GHEZZI, P. (1988). Adrenalectomy sensitizes mice to the lethal effects of interleukin 1 and tumor necrosis factor. J. Exp. Med., 167, 1708-1712.
- BUTLER, L., LAYMAN, N.K., RIEDL, P.E., CAIN, R.L., SHELLHASS, J., EVANS, G.F. & ZUCKERMAN, S.H. (1989). Neuroendocrine regulation of *in vivo* cytokine production and effects: I. *In vivo* regulatory networks involving the neuroendocrine system, interleukin 1 and tumor necrosis factor-α. *J. Neuroimmunol*, 24, 143–153.
- DENT, G., GIEMBYCZ, M.A., RABE, K.F. & BARNES, P.J. (1991). Inhibition of eosinophil cyclic nucleotide PDE activity and opsonised zymosan-stimulated respiratory burst by 'type IV' selective PDE inhibitors. Br. J. Pharmacol., 103, 1339-1346.

- DERKX, B., TAMINIAU, J., RADEMA, S., STRONKHORST, A., WORTEL, C., TYTGAT, G. & VAN DEVENTER, S. (1993). Tumour necrosis factor antibody treatment in Crohn's disease. *Lancet*, 342.t 173-174.
- ELLIOTT, M.J., MAINI, R.N., FELDMANN, M., KALDEN, J.R., ANTONI, C., SMOLEN, J.S., LEEB, B., BREEDVELD, F.C., MACFARLANE, J.D., BIJL, H. & WOODY, J.N. (1994). Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor a (cA2) versus placebo in rheumatoid arthritis. *Lancet*, 344, 1105-1110.
- FLOWER, R.J., PARENTE, L., PERSICO, P. & SALMON, J.A. (1986). A comparison of the acute inflammatory response in adrenalectomized and sham-operated rats. *Br. J. Pharmacol.*, 87, 57-62.
- GRISWOLD, D.E., WEBB, E.F., BRETON, J., WHITE, J.R., MARSHALL, P.J. & TORPHY, T.J. (1993). Effect of selective phosphodiesterase type IV inhibitor, rolipram, on fluid and cellular phases of inflammatory response. *Inflammation*, 17, 333-344.
- HADLEY, A.J., FLACK, J.D. & BUCKINGHAM, J.C. (1991). Potentiation of cyclic AMP mediated corticotrophin (ACTH) release by denbufylline in vivo and in vitro. Br. J. Pharmacol., 104, 313P.
- HAWES, A.S., ROCK, C.S., KEOGH, C.V., LOWRY, S.F. & CALVANO, S.E. (1992). In vivo effects of the antiglucocorticoid RU 486 on glucocorticoid and cytokine responses to Escherichia coli endotoxin. Infect. Immun., 60, 2641 2647.
- MOLNAR-KIMBER, K.L., YONNO, L., HEASLIP, R.J. & WEICHMAN, B.M. (1992). Differential regulation of TNF α and IL-1 β production from endotoxin stimulated human monocytes by phosphodiesterase inhibitors. *Media. Inflamm.*, 1, 411-417.
- NIELSON, C.P., VESTAL, R.E., STURM, R.J. & HEASLIP, R. (1990). Effects of selective phosphodiesterase inhibitors on the polymorphonuclear leukocyte respiratory burst. J. Allergy Clin. Immunol., 86, 801-808.
- PARANT, M., CONTEL, C.L., PARANT, F. & CHEDID, L. (1991). Influence of endogenous glucocorticoid on endotoxin - induced production of circulating TNFα. Lymphokine Cytokine Res., 10, 265-271
- PEACHELL, P.T., UNDEM, B.J., SCHLEIMER, R.P., MACGLASHAN, D.W., LICHTENSTEIN, L.M., CIESLINSKI, L.B. & TORPHY, T.J. (1992). Preliminary identification and role of phosphodiesterase isozymes in human basophils. *J. Immunol.*, 148, 2503-2510.
- PEERS, S.H., MOON, D. & FLOWER, R.J. (1988). Reversal of the antiinflammatory effects of dexamethasone by the glucocorticoid antagonist RU 38486. *Biochem. Pharmacol.*, 37, 556-557.

- PERRETTI, M., BECHERUCCI, C., SCAPIGLIATI, G. & PARENTE, L. (1989). The effect of adrenalectomy on interleukin 1 release in vitro and in vivo. Br. J. Pharmacol., 98, 1137-1142.
- PERRETTI, M., DUNCAN, G.S., FLOWER, R.J. & PEERS, S.H. (1993). Serum corticosterone, interleukin 1 and tumour necrosis factor in rat experimental endotoxaemia: comparison between Lewis and Wistar strains. *Br. J. Pharmacol.*, 110, 868-874.
- PETTIPHER, E.R. & WIMBERLY, D.J. (1994). Cyclooxygenase inhibitors enhance tumour necrosis factor production and mortality in murine endotoxic shock. Cytokine, 6, 500-503.
- SEKUT, L., YARNALL, D., STIMPSON, S.A., NOEL, L.S., BATEMAN-FITE, R., CLARK, R.L., BRACKEEN, M.F., MENIUS, J.A. & CONNOLLY, K.M. (1995). Antiinflammatory activity of phosphodiesterase(PDE)-IV inhibitors in acute and chronic models of inflammation. Clin. Exp. Immunol., 100, 126-132.
- SEMMLER, J., WACHTEL, H. & ENDRES, S. (1993). The specific type IV phosphodiesterase inhibitor rolipram suppresses tumor necrosis factor-α production by human mononuclear cells. *Int. J. Immunopharmacol.*, 15, 409-413.
- SEVERN, A., RAPSON, N.T., HUNTER, C.A. & LIEW, F.Y. (1992). Regulation of tumor necrosis factor production by adrenaline and β-adrenergic agonists. J. Immunol., 148, 3441-3445.
- SIMPSON, P.J., SCHELM, J.A., SMALLWOOD, J.K., CLAY, M.P. & LINDSTROM, T.D. (1992). Inhibition of granulocyte cAMP phosphodiesterase by rolipram is not sufficient to protect the canine myocardium from reperfusion injury. *J. Card. Pharmacol.*, 19, 987-995.
- SOMMER, N., LOSCHMANN, P.A., NORTHOFF, G.H., WELLER, M., STEINBRECHER, A., STEINBACH, J.P., LICHTENFELS, R., MEYERMANN, R., REITHMULLER, A., FONTANA, A., DICHGANS, J. & MARTIN, R. (1995). The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. *Nature Med.*, 1, 244-248.
- TURNER, C., ESSER, K.M. & WHEELDON, E.B. (1993). Therapeutic intervention in a rat model of ARDS: IV. Phosphodiesterase IV inhibition. *Circ. Shock*, 39, 237-245.
- UNDERWOOD, D.C., MATTHEWS, J.K., OSBORN, R.R., NOVAK, L.B. & TORPHY, T.J. (1992). The significance of β-adrenergic activity on the inhibitory effects of rolipram against early and late phase response to antigen in the guinea pig. Am. Rev. Respir. Dis., 145, A 392.

(Received August 30, 1995 Revised November 27, 1995 Accepted December 8, 1995)